With 720,000 cases annually in the U.S., and a staggering mortality rate between 25 – 50%, sepsis isn’t just life-threatening; it doubles as one of the country’s most expensive inpatient conditions, consuming more than USD 27 billion annually. What’s worse is that COVID-19, like other infections, can lead to sepsis – threatening to tip overwhelmed ICUs over the edge.
Working with IBM’s Data Science and AI Elite team, organizations such as Geisinger Health System have made tremendous leaps forward using inpatient clinical data to build models to predict – and prevent – sepsis mortality. Identifying which sepsis patients are at greatest risk can help providers prioritize care – and stave off risky, costly inpatient admissions.